37,719 research outputs found

    Central Schemes for Porous Media Flows

    Full text link
    We are concerned with central differencing schemes for solving scalar hyperbolic conservation laws arising in the simulation of multiphase flows in heterogeneous porous media. We compare the Kurganov-Tadmor, 2000 semi-discrete central scheme with the Nessyahu-Tadmor, 1990 central scheme. The KT scheme uses more precise information about the local speeds of propagation together with integration over nonuniform control volumes, which contain the Riemann fans. These methods can accurately resolve sharp fronts in the fluid saturations without introducing spurious oscillations or excessive numerical diffusion. We first discuss the coupling of these methods with velocity fields approximated by mixed finite elements. Then, numerical simulations are presented for two-phase, two-dimensional flow problems in multi-scale heterogeneous petroleum reservoirs. We find the KT scheme to be considerably less diffusive, particularly in the presence of high permeability flow channels, which lead to strong restrictions on the time step selection; however, the KT scheme may produce incorrect boundary behavior

    An unified cosmological evolution driven by a mass dimension one fermionic field

    Full text link
    An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.Comment: 22 pages, 5 figure

    85% efficiency for cw frequency doubling from 1.08 to 0.54 μm

    Get PDF
    Conversion efficiency of 85% has been achieved in cw second-harmonic generation from 1.08 to 0.54 μm with a potassium titanyl phosphate crystal inside an external ring cavity. An absolute comparison between the experimental data and a simple theory is made and shows good agreement

    A water level relationship between consecutive gauge stations along Solim\~oes/Amazonas main channel: a wavelet approach

    Full text link
    Gauge stations are distributed along the Solim\~oes/Amazonas main channel to monitor water level changes over time. Those measurements help quantify both the water movement and its variability from one gauge station to the next downstream. The objective of this study is to detect changes in the water level relationship between consecutive gauge stations along the Solim\~oes/Amazonas main channel, since 1980. To carry out the analyses, data spanning from 1980 to 2010 from three consecutive gauges (Tefe, Manaus and Obidos) were used to compute standardized daily anomalies. In particular for infra-annual periods it was possible to detect changes for the water level variability along the Solim\~oes/Amazonas main channel, by applying the Morlet Wavelet Transformation (WT) and Wavelet Cross Coherence (WCC) methods. It was possible to quantify the waves amplitude for the WT infra-annual scaled-period and were quite similar to the three gauge stations denoting that the water level variability are related to the same hydrological forcing functions. Changes in the WCC was detected for the Manaus-Obidos river stretch and this characteristic might be associated with land cover changes in the floodplains. The next steps of this research, will be to test this hypotheses by integrating land cover changes into the floodplain with hydrological modelling simulations throughout the time-series

    Phantom Accretion by Black Holes and the Generalized Second Law of Thermodynamics

    Full text link
    The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the Generalized Second Law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by Generalized Second Law. In particular, this result provides a complementary confirmation that cosmological phantom fluids do not need to have negative temperatures

    A Random Multifractal Tilling

    Full text link
    We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each nn-step there is a random choice of a parameter ρi\rho_i related to the section ratio. For the case of random choice between ρ1\rho_1 and ρ2\rho_2 we find analytically the full spectrum of fractal dimensions
    corecore